

20048 11 February 2022

CYRIL J. DEMEYERE LIMITED

John D. Wiebe, P. Eng. | Andrew Gilvesy, P. Eng. Peter J. Penner, P. Eng. | Deren Lyle, P. Eng.

261 Broadway, P.O. Box 460, Tillsonburg, ON N4G 4H8 T: 519-688-1000 F: 519-842-3235

www.cjdleng.com

11 February 2022

20048

CANTERBURY PLACE DEVELOPMENT

VILLAGE OF BELMONT

MUNICIPALITY OF CENTRAL ELGIN

FUNCTIONAL SERVICING REPORT

1. Introduction

This Functional Servicing Report has been prepared to support the draft plan and zoning applications by Karwood Ontario Ltd. to permit the construction of an 18-lot subdivision development directly adjacent to the existing Canterbury Place Subdivision in Belmont.

The subject land is legally described as Part 3 and Part 7, Plan 11R-9106, of Lot 32 on Registered Plan 231 within the Municipality of Central Elgin. The property lies on the east side of Canterbury Place, south of the intersection of Canterbury Place and Caesar Road (County Road 37). The property is bounded by the exsiting Canterbury Place roadway and Canterbury Place Subdivision to the west, two residential dwellings to the north, agricultural lands to the east and the existing Belmont soccer fields to the south. The site is currently undeveloped with minimal tree coverage internal to the site and an existing tree row along the southern limit of the property. The lands are currently zoned Residential hR1-9. The holding provision, as indicated in Section 5.2.5.9 of the Belmont Zoning By-Law 91-21 (Jan, 2-16), states the removal of the "h" symbol requires a subdivision agreement is entered into with the Municipality of Central Elgin and the Municipality of Central Elgin certifies that there is adequate uncommitted reserve sewage capacity available for the development of the lands in question. The development is proposed to be re-zoned as Residential R1 with certain special provisions as noted in the zoning application.

2. Proposed Development

Karwood Ontario Ltd. is proposing to consutruct an 18-lot subdivision consisting of 18 single detached dwellings. Site access to the property is proposed off of Canterbury Place through a 20m public right of way (ROW). The proposed ROW is shown terminating at the east limit of the property, allowing for extension of the roadway during the possible future development of the neighboring lands to the east.

3. Sanitary Servicing

The original design of the Canterbury Place Subdivision completed by Development Engineering (London) Ltd. in 1986 did not consider the subject lands within the sanitary or storm tributary design. Upon review of the existing subdivision sanitary design sheets, the existing sanitary system was designed with reserve capacity that could accommodate the proposed Canterbury Place Development as well as the neighboring lands further to the east. The original design sheets indicated a reserve capacity of 24.01/s. The sanitary design sheet was updated to include the proposed Canterbury Place Development and the neighboring lands further to the east using the following parameters:

- Original design population per unit (4 people/unit) and unit densities (15 units/ha) from the 1986 Canterbury Place Subdivision sanitary design by Development Engineering (London) Ltd. were used as they are more conservative than the current Central Elgin Sanitary Design Standards. Max. 60 people/ha or 4 people/unit (Development Engineering (London) Ltd., 1986)
- Design Population (Canterbury Place Development) = 18 proposed units x 4 people/unit = 72 people
- Per Capita Flow of 400 litres/capita/day (Central Elgin Sanitary Design Standards, Section 4.2)
- Harmon Peaking Factor = 1 + (14/(4+P1^0.5)) = 1 + (14/(4+0.072^0.5)) = 4.28 (Central Elgin Sanitary Design Standards, Section 4.2)
- Sewage Flow = 72 people x 400 litres/capita/day x 4.28 = 1.43 l/s
- Infiltration = 0.20 l/s/ha (Central Elgin Sanitary Design Standards, Section 4.2)
- Infiltration Flow = 0.97ha x 0.20 l/s/ha = 0.19 l/s
- Sanitary Design Flow = 1.43 l/s + 0.19 l/s = 1.62 l/s

This sanitary design flow was for the proposed Canterbury Place Development was in the updated sanitary design sheet along with the neighboring easterly lands and the existing Canterbury Place Subdivision (see Appendix 'A'). The updated sanitary design indicates there is still a reserve capacity of 23.51/s at the existing sanitary outlet on Belmont Road (County Road 74). The proposed Canterbury Place Development constitutes 11.6% of the total tributary area for the existing sanitary outlet, including the neighboring easterly lands. The existing 250mmø sanitary outlet capacity is 34.71/s, which equates to an outlet pipe capacity allocation of 4.01/s for the proposed Canterbury Place Development. The sanitary design flow is only 1.61/s, which is well within the 4.01/s allocated capacity and as mentioned above, the total sanitary outlet flow including the neighboring easterly lands and existing Canterbury Place Subdivision is still 23.51/s below the outlet pipe capacity.

Within the proposed development, a 200mmø sanitary pipe will be used along Street 'A' which flows from the proposed sanitary manhole at the east limit of the site and outlets at the existing SAMHS2 at the intersection of Canterbury Place and Street 'A'. A cut-out will be left within the proposed sanitary manhole at the east limit of the site to allow for connection during the possible development of the neigboring easterly lands. Individual 150mmø sanitary PDC's are proposed to be installed for each unit. All sanitary piping proposed will be designed in accordance with Section 4.0 of the Central Elgin Design Standards, updated June 2004.

4. Watermain Servicing

There is an existing 150mmø PVC DR18 watermain on Canterbury Place which is proposed as the primary watermain supply for the development. This 150mmø watermain is connected to an existing 150mmø watermain on Belmont Road (County Road 74) and an existing 150mmø watermain north of Caesar Road (County Road 37) within the ravine lands. A 200mmø internal watermain is to be provided within the Street 'A' to the east limit of the site, where the watermain will be capped to allow for future connection if the neigboring easterly lands are developed. The existing hydrant at the intersection of Cantebury Place and Street 'A' along with the proposed hydrant at the east limit of Street 'A' allow for the front door of each proposed unit to be within a 90m radius of a fire hydrant.

Domestic water demand flows were calculated in accordance with Section 5.0 of the Central Elgin Design Standards, updated June 2004, and the Ministry of the Environment, Conservation and Parks (MECP) Design Guidelines for Drinking Water Systems, 2008. Calculation parameters were as follows:

- Original Sanitary Design Density = 4 ppl/unit (Development Engineering (London) Ltd., 1986)
- Average Per Capita Demand = 400 I/cap/d (Central Elgin Design Standards, Section 5.2.2)
- Max. Day Factor = 4.56 (MECP Drinking Water Design Guidelines, Table 3-3)
- Peak Hour Factor = 6.88 (MECP Drinking Water Design Guidelines, Table 3-3)

Based on the above design parameters, the average daily demand was calculated to be 0.33 l/s corresponding to a max. day demand of 1.52 l/s and a peak hour demand of 2.29 l/s.

Firefighting flows were determined in accordance with Section 5.2.1 of the Central Elgin Design Standards and the "Water Supply For Public Fire Protection – A Guide to Recommended Practice (1999)" by the Fire Underwriters Survey. A building area of 170m² (max. size of single detached dwelling based on proposed zoning) with an assumed 2-storey building height of 7.5m to underside of roof (including the basement) was used, which is complaint with the OBC Section 3.2.2.47 maximum floor area of 600m² for an up to 3-storey Class C (residential) building. The dwellings were assumed to be constructed of ordinary, combustible materials with an OBC Section 3.2.2.47 compliant 45 min. minimum fire resistance rating between horizontal and vertical dwelling-unit separation barriers. The resulting FUS fire flow required is 70 l/s. As mentioned above, the front door of each dwelling will be within a 90m radius of either the existing or proposed hydrant.

The total max. day demand + fire flow requirement for the site is 71.52 l/s, and the peak hour demand requirement for the site is 2.29 l/s. See Appendix 'B' for detailed domestic water demand and fire flow calculations.

Fire hydrant testing will be required to confirm the head loss at the required max. day + fire flow rate as the detailed design progresses, although there are no present concerns with water supply for the proposed development.

5. Stormwater Management & Stormwater Servicing

The original design of the Canterbury Place Subdivision by Development Engineering (London) Ltd. also included the design and installation of a storm sewer system throughout the subdivision. This original storm design did not allocate any stormwater flow from the area of the proposed development. The original design of the Canterbury Place Subdivision indicated the existing 600mmø storm outlet near the intersection of Caesar Road (County Road 37) and Belmont Road (County Road 74) is operating at 99.4% capacity. This operating capacity does not allow for any additional flow from the proposed development or the neighboring lands to the east. As a result of this, a separate storm system and outlet for the proposed development (0.97ha) and approx. 0.1ha of the neighboring easterly lands was designed.

The stormwater management goals for the site are to provide quantity control by restricting postdevelopment peak outflows to pre-development levels and an enhanced level of quality control (80% TSS removal) up to the 100-year design storm.

In order to provide stormwater quantity control and restrict post-development peak outflows to pre-development levels, a 'superpipe' strategy is proposed, which includes providing an oversized 1500mmø stormwater conveyance pipe along Street 'A' to store runoff underground. The proposed 1500mmø pipe will be approx. 80m in length and flow from the proposed CBMHST4 in front of Lot 7 to the proposed CBMHST3 just beyond the west limit of the site. An orifice will be installed at the northerly invert of CBMHST3 to restrict outflows from the superpipe during post-development conditions to pre-development levels. Under pre-development conditions, the site was allocated a runoff coefficient of C=0.30, which is increased to a runoff coefficient of C=0.42 under post-development peak outflows to pre-development levels for the 2 to 100-year design storms using the current 2010 MTO IDF Factors. In total, 120m³ of stormwater storage is required to control the 100-year design storm to pre-development levels; the proposed 1500mmø pipe provides 137m³ and is therefore of sufficient capacity. The storage capacity of the pipe takes into account the volume required for conveyance of the flows from within the site, and as a conservative design, does not account for any storage that will be provided by the rest of the proposed stormwater piping and conveyance system.

Quality control for the development is proposed to be provided by a Wilkinson Watergate Model WG100, which is capable of oil separation for flows up to 46.0 l/s and sediment removal up to flows of 105.0 l/s. The maximum outflow rate from the site for the 100-year storm is 57.5 l/s and 50.1 l/s for the 5-year storm. The proposed Watergate Model WG100 is capable of removing oil globules larger than 150 microns up to the 5-year design storm and 80% TSS removal up to the 100-year design storm, providing an enhanced level of quality control for the site. The Watergate chamber is proposed to be installed within the Canterbury Place ROW immediately west of the site, approx. 10m north of CBMHST3. The receiving watercourse proposed as the stormwater release point for the site was not identified as a sensitive watercourse nor a Provincially Significant Wetland within the Issues Scoping Report completed by Vroom + Leonard, or the Central Elgin Official Plan. The watercourse will be receiving outflows restricted to pre-development levels and runoff treated to an enhanved level of quality control up to the 100-year design storm.

A 250mmø storm conveyance pipe will be installed from the proposed MHST5 to CBMHST4. A cutout will be left at MHST5 to allow for future connection for approx. 0.1ha of the neighboring easterly lands. A rear yard swale will collect flows from the back yards of Lots 10-18 which will outlet through the proposed CB3 and a side yard storm easement between lots 15 & 16, which outlets to the proposed superpipe along Street 'A'. A rear yard swale will also collect flows from the back yards of Lots 1-9, which will flow to CB5 and CB4 that outlet to the proposed 300mmø storm outlet between the west limit of the site and the existing Canterbury Place roadway. Catchbasins will be provided every 90m in accordance with the Central Elgin Design Standards, which will be connected to the storm conveyance and storage system on-site. Street 'A' is proposed to have major flows split in opposite directions, with a maximum of 0.25m of ponding over CB2 and CBMHST4 before overtopping the east limit of Street 'A' and draining towards open grassed lands to the south. A maximum of 0.20m of ponding will occur over CB1 and CBMHST3 before overtopping the centerline of Canterbury Place and flowing to the north along Canterbury Place towards Caesar Road (County Road 37) and the northern ravine lands. All stormwater conveyance piping has been designed for the 2-year design storm using current 2010 MTO IDF Factors, with a runoff coefficient of C=0.42 and a 5-min inlet time in accordance with Section 3.0 of the Central Elgin Design Standards.

The proposed stormwater outlet location is at the existing ravine lands north of Caesar Road (County Road 37) into the existing watercourse within these ravine lands. From CBMHST3, within Street 'A', just outside the westerly limit of the site, a 300mmø storm pipe is proposed to flow 10m in length to the Wilkinson stormwater treatment chamber and then continue for 105.0m to the intersection of Canterbury Place and Caesar Road (County Road 37). The 300mmø storm pipe is currently shown 2.0m west of the western site limit (2.0m off the eastern limit of the Canterbury Place ROW) to avoid typical utility trench locations, but this running line is subject to change with detailed design and utility locates. At the south-eastern corner of the intersection of Canterbury Place and Caesar Road there is an existing catchbasin which is proposed to be relocated 3m further east. A storm manhole (MHST2) is proposed at the south-eastern corner of this intersection. At MHST2, a cut-out to the east will be left as an outlet point for the future connection of the eastern lands that neighbour the proposed development. A runoff coefficient of C=0.30 and a 30.9 min. time of concentration equating to a 100-year pre-development outflow of 119.4 l/s has been calculated for the entire 1.40ha of easterly neighboring lands as a conservative design for future development. From MHST2, a 375mmø storm pipe will continue across Caesar Road (County Road 37) for approx. 12.0m to proposed MHST1. From proposed MHST1, a 375mmø storm pipe will continue for approx. 39.0m to the existing watercourse within the ravine lands. This final outlet pipe will be set at a longitudinal slope of approx. 12.6%, which results in a flow velocity of 5.6m/s which is less than the maximum velocity of 6.0m/s in Section 3.0 of the Central Elgin Design Standards. Cable concrete matting at the outlet point to the watercourse will be provided to provide erosion control. A permit from the Kettle Creek Conservation Authority will be required for any work within the area of the existing watercourse on the north side of Caesar Road.

6. Erosion and Sedimentation Control/Construction Practices

The parking surfaces and roadways will be hot-mix asphalt with concrete curb and gutter to prevent erosion in the parking areas. Erosion prone areas adjacent to all in/outletting piping and structures will be protected with riprap underlain with geotextile and cable concrete matting as required.

Topsoil stripping and grading will be completed as the project develops. Silt fence will be placed at surface run-off locations and across drainage courses, where applicable. As servicing progresses, silt fence (with straw bales, if required) will be placed across all drainage swales at 100 m maximum intervals, including catchbasins and piped outlets and/or as directed on site.

Topsoil piles will be located for suitable access, but will be removed as far as practical from drainage courses.

Storm sewers and granular base will be installed by a General Contractor. In addition to the silt fence, the Contractor will place geotextile under all catchbasin and manhole castings to prevent the flow of construction silt into the storm sewers and to the receiving water courses.

All silt will be removed as accumulated and/or as directed by the Engineer on site. Catchbasins will be cleaned by the Contractor during construction to remove any silt which may accumulate.

All finished earth surfaces will be topsoiled and seeded. Areas susceptible to erosion will be protected by sod, staked sod and/or riprap as conditions warrant. The Contractor will be required to return within the guaranteed maintenance period to remedy any areas of erosion which develop.

Catchbasins will contain 600mm minimum deep sumps which will collect sediment.

7. OTHER RELATED STUDIES

Archaeological

An archaeological assessment entitled "The Stage 1 & 2 Archaeological Assessment of the Canterbury Place Development..." was completed in May of 2021 by Lincoln Environmental Consulting Corp. indicating no further assessment of the site was required. Clearance was provided by the Ministry of Heritage, Sport, Tourism and Culture Industries in June of 2021.

Geotechnical

A geotechnical study was completed by EXP (London) Inc. to assess the existing site conditions. The soil conditions on site were found to be clayey silt underlaying silt and topsoil. Glacial till was found below the clayey silt layer on-site. The groundwater level was found to be 2.8m – 3.4m below ground surface.

Issues Scoping Report (ISR)

An Issues Scoping Report was completed by Vroom + Leonard to assess the potential impact of the proposed development on the surrounding natural features and subwatershed, including the ravine lands at the stormwater outlet point. The proposed development was not found to have any major adverse affects on the surrounding natural area or subwatershed and an Environmental Impact Study (EIS) was not found to be warranted.

** ** **

If there are any questions, please do not hesitate to contact this office.

All of which is respectfully submitted,

Ven Ma

Deren Lyle, P.Eng.

DJL/avm

APPENDIX 'A'

SANITARY DESIGN SHEETS

- ORIGINAL CANTERBURY PLACE SUBDIVISION SANITARY TRIBUTARY DRAWING AND DESIGN SHEET
- PROPOSED CANTERBURY PLACE DEVELOPMENT SANITARY DESIGN SHEET

Q	T				SEWER	DESIGN			Dore .]	PBC	EI F	
(1/5)	SZE PIF	E ST.	SLOPE	<u>v _ </u>	n	Actual Ca		Y LENGT	H TINE OF	LOSSES	FALL S	INVERT	ELEV.
			++				1	1	1	1	1	- <u>u.a.</u>	
	1	_								<u> </u>			
04.31	250	3.0	+ +-	3.10	0.013	105	2.14	56,4	0.44		1.748		
05.90	250	3.20	++	3.20	C.013	106	2.16	42.0	0.32		1.344	1	
63,07	250	3.00		1.20	0.013	102	2.1	55 4	0.44				
3.53	876	7.30	+	120		ate		-			1_662		
	376				0.015	6.2	2.05	154.0	0.94		1.288		
01.18	9/5	2.60			0.015	260	2.30	49.5	0.36		1.386		
2.61	375	3.60		4.20	0.015	294	2.59	53.5	Q.24		1,926		
6.32	300	1.90	+	1.30	0.015		1.64	107.3	1.09		2.039		
1.26	375	0.40		0.28	C.013	110	1.3	90,2	1.16		0.351		
4.12	450	1.00	0.15 0.1	44 0.9d	0.015	257	1,55	.96,9	1.04		0.969		
5.77	375	6.90		2.30	0_015	410	Q/A = .13	.75.0	0.59	0.144	5.122		
×6.70	525	0.88		0.88	0.013	410	1.68	65.0	0.58		0.572	_	
	600	0.48		(248	0.013	430	ιs	70.0	078		0.336		
17.41				+ +-	-								
27.41						1		_					

	CYRIL J. DEMEYERE L CONSULTING ENGINE	.IMITED EERS					SANIT	ARY SEV	VER DE	SIGN SH	HEET - N	/IETRIC									
	BOX 460, TILLSONBURG,	N4G 4H8																	M=1+14(4+P ⁰	⁵) ⁻¹ (l/s)	
	e-mail: cjdl@cjdleng.	com																	P=Population	in thousands	
	PHONE: (519) 688-1	000			PROJECT:	Canterbury F	Place Devel	opment						CENTRAL	ELGIN DESIG	N CRITERIA	_				
	FAX: (519)842-323	35		MU	NICIPALITY:	Central Elgir	n (Belmont)			_			⁽¹⁾ F	POPULATION:	4	Persons/UNI	Г		Cap=1000n ⁻¹	*R ^{0.667} s ^{0.5} (I	/s)
	website: www.cjdleng	.com			DATE:	2022-	02-11						⁽¹⁾ L(OW DENSITY:	60	Persons/ha			R=Hydraulic r	adius (=Ø/4) (m)
				D	ESIGNED BY:	A۱	/M						HI	GH DENSITY:	140	Persons/ha			A=Pipe cross-	sectional area	(m ²)
				(CHECKED BY:	D	JL						IN	IFILTRATION:	0.200	l/s/ha			s=Slope of pip	be	
					JOB No.:	200)48							SEWAGE:	400	l/Person/Day					
	LOCATION				AREA			POPUL	ATION								PR	OPOSED SEV	VER		
DWG #	STREET	FROM MH	ТО МН	Net or Gross	Δ Area (ha)	Total Area (ha)	PER ha.	NO. LOTS	∆ Pop	Total Pop.	Peaking Factor, M	Sewage (l/s)	Infiltration (I/s)	Design Flow (l/s)	Length (m)	Pipe Size (mm)	Type of Pipe	n	Min Slope (%)	Capacity (I/s)	Full Flow Velocity
																					(m/s)
	EASTERLY EXTERNAL LANDS	EXT	SAMH1	Gross	1.50	1.5	60	-	90	90	4.256	1.773	0.300	2.07	-	200	PVC	0.013	0.40	20.74	0.66
	STREET A	SAMH1	EX. SAMHS2	Gross	0.97	2.47	-	18	72	162	4.180	3.135	0.494	3.63	119.4	200	PVC	0.013	0.40	20.74	0.66
	CANTERBURY PLACE	EX. SAMHS1	EX. SAMHS2	Gross	0.56	0.56	60	-	33	33	4.347	0.670	0.111	0.78	96.0	200	PVC	0.013	0.70	27.44	0.87
		EX. SAMHS2	EX. SAMHS3	Gross	0.77	3.79	60	-	46	241	4.117	4.602	0.759	5.36	92.3	200	PVC	0.013	0.50	23.19	0.74
	SHERWOOD AVENUE	EX. SAMHS4	EX. SAMHS3	Gross	1.07	1.07	60	-	64	64	4.291	1.280	0.215	1.49	110.0	200	PVC	0.013	0.40	20.74	0.66
	CANTERBURY PLACE	EX. SAMHS3	EX. SAMHS5	Gross	0.76	5.63	60	-	46	351	4.048	6.587	1.126	7.71	92.0	250	PVC	0.013	0.34	34.68	0.71
	SCARLETT PLACE	EX. SAMHS6	EX. SAMHS5	Gross	1.13	1.13	60	-	68	68	4.286	1.349	0.227	1.58	108.0	200	PVC	0.013	0.34	19.12	0.61
	CANTERBURY PLACE	EX. SAMHS5	EX.SAMHS7	Gross	1.61	8.38	60	-	97	516	3.967	9.482	1.675	11.16	98.2	250	PVC	0.013	0.34	34.68	0.71
	OUTLET	EX. SAMHS7	EX. SAMHS8	Gross	0.00	8.38	60	-	0	516	3.967	9.482	1.675	11.16	74.0	250	PVC	0.013	0.34	34.68	0.71
		EX. SAMHS8	EX. SAMHS9	Gross	0.00	8.38	60	-	0	516	3.967	9.482	1.675	11.16	107.0	250	PVC	0.013	0.34	34.68	0.71
								-					ļ					ļ			
													ļ					ļ			
				-	Neter																
NO	REVISION		BY	-	Notes: (1) Design Po	pulation and D	ensity are bas	sed on original [,]	1986 sanitarv	design for the	Canterbury Pla	ce Subdivisior	n by Developm	ient Engineerir	ng (London) Lt	d.					

APPENDIX 'B'

WATER DEMAND CALCULATIONS

MUNICIPALITY OF CENTRAL ELGIN (BELMONT) CANTERBURY PLACE DEVELOPMENT

DOMESTIC WATER DEMAND CALCULATIONS

PROJECT No. 20048 DATE: 11-Feb-22 DESIGN BY: AVM CHECKED BY: DJL

CANTERBURY PLACE DEVELOPMENT

No. Residential Units	18	units	(18 Sin	gle Det	ach	ed Dv	vellings)	
Pop. Per Residential Unit	4.00]ppl/unit	(Origin	al Cant	erbu	ury Pla	ace Subdivisio	on D
Residential Design Population	72	cap.	18	units	*	4	ppl/unit	
Average Daily Demand	400	L/cap./d	(Centra	al Elgin	Des	ign St	andards Secti	on 5
Residential Base Demand	0.33	L/s	72	сар.	*	400	L/cap/d	
Residential Max. Day Factor	4.56]-	(MECP	Drinkir	ng W	/ater	Design Guidel	ines
Residential Peak Hour Factor	6.88]-	(MECP	Drinkir	ng W	/ater	Design Guidel	ines
Residential Max. Day Demand	1.52	L/s	0.33	L/s	*	4.56		
Residential Peak Hour Demand	2.29	L/s	0.33	L/s	*	6.88		
 			1					
Total Average Base Demand	0.33	L/s]					
		_	1					
 Total Max. Day Demand	1.52	L/s	J					

L/s

(Original Canterbury Place Subdivision Design, SAN Design = 4 ppl/unit)
18 units * 4 ppl/unit
(Central Elgin Design Standards Section 5.0, 2004)
72 cap. * 400 L/cap/d
(MECP Drinking Water Design Guidelines Table 3-3, 2008)
(MECP Drinking Water Design Guidelines Table 3-3, 2008)
0.33 L/s * 4.56

Total Peak Hour Demand 2.29

No.	REVISION	DATE	BY

MUNICIPALITY OF CENTRAL ELGIN (BELMONT) CANTERBURY PLACE DEVELOPMENT

FIRE UNDERWRITERS SURVEY FIRE DEMAND CALCULATIONS

PROJECT No. 20048 DATE: 11-Feb-22 DESIGN BY: AVM CHECKED BY: DJL

	REQUIRED FIRE FLOW	70	L/s	
	REQUIRED FIRE FLOW	4194.00	L/min	
5)	Final Fire Flow	4193.45	L/min	(Final Fire Flow = F - RF + IF) (FUS, 1999)
	Increase In Fire Flow (IF)	1467.5	L/min	(Fire Flow Increase After Step 4)(F*Ssum)(FUS, 1999)
	S _{SUM}	53.8%		
	Party Wall Building Separation	0.0%		No Building Has Unpierced Party Wall/Firewall Boundary
	SREAR	7.5%		(Distance = 25.00 m) (FUS, 1999)
	Spicut	21.0%		(Distance = 2.40 m) (FUS, 1999)
	SFRONT	21.0%		(Distance = 2.40 m) (FUS, 1999)
4)	Exposed Structures Factor	4 3%		(Distance - 32.00 m) (FLIS 1999)
	Exposed Structures Faster		_	
	Fire Flow Reduction (R _F)	0.00	L/min	(Fire Flow Reduction From Step 3)(F*As)
3)	Sprinkler System Reduction (As)	0%		(Sprinkler System Reduction FUS, 1999)
2)	Occupancy Safety Rating Revised Fire Flow (F)	-15% 2725.97	L/min	(Occupancy Safety Rating FUS, 1999) (Fire Flow After Step 2)
1)	Base Fire Flow	3207.02	L/min	(F=220*C*√Gross Floor Area)(FUS, 1999)
	С	1.0		(Construction Type Coefficient) (FUS, 1999)
	Building contents (Occupancy)	milea Comb	ustible	(Appenaix FUS, 1999)
	Construction Type	rdinary Cons	truction (Br	ick or Other Masonry Walls, Combustible Floor and Interior)
	Building Class	С		
	Fire Resistance/Separation	1.0	h	
	Type of Sprinkler System N	one		
	Building Height	7.50	m	(Height to Underside of Roof Deck, Not Including Crawl Space Below Ground) (OBC Section 3)
	Gross Floor Area	213	m ²	Between Floors)
	No.Storeys	2		(Largest Floor + 25% of Two immediately Adioining Floors, Not Including Basement, Based on 1-Hr Fire Rating
	Average Floor Area	170.0	m ²	
			_	
CANTER	BURY PLACE DEVELOPMENT - LOT 7			

No.	REVISION	BY	DATE

APPENDIX 'C'

STORMWATER DESIGN SHEETS

- ORIGINAL CANTERBURY PLACE SUBDIVISION STORM TRIBUTARY DRAWING AND DESIGN SHEET
- PROPOSED CANTERBURY PLACE DEVELOPMENT STORM DESIGN SHEET
- CANTERBURY PLACE STORMWATER MANAGEMENT CALCULATIONS

Q	T				SEWER	DESIGN			Dore .]	PBC	EI F	
(1/5)	SZE PIF	E ST.	SLOPE	<u>v _ </u>	n	Actual Ca		Y LENGT	H TINE OF	LOSSES	FALL S	INVERT	ELEV.
			++				1	1	1	1	1	- <u>u.a.</u>	
	1	_								<u> </u>			
04.31	250	3.0	+ +-	3.10	0.013	105	2.14	56,4	0.44		1.748		
05.90	250	3.20	++	3.20	C.013	106	2.16	42.0	0.32		1.344		
63,07	250	3.00		1.20	0.013	102	2.1	55 4	0.44				
3.53	876	7.30	+	120		ate		-			1_662		
	376				0.015	6.2	2.05	154.0	0.94		1.288		
01.18	9/5	2.60			0.015	260	2.30	49.5	0.36		1.386		
2.61	375	3.60		4.20	0.015	294	2.59	53.5	Q.24		1,926		
6.32	300	1.90	+	1.30	0.015		1.64	107.3	1.09		2.039		
1.26	375	0.40		0.28	C.013	110	1.3	90,2	1.16		0.351		
4.12	450	1.00	0.15 0.1	44 0.9d	0.015	257	1,55	.96,9	1.04		0.969		
5.77	375	6.90		2.30	0_015	410	Q/A = .13	.75.0	0.59	0.144	5.122		
×6.70	525	0.88		0.88	0.013	410	1.68	65.0	0.58		0.572	_	
	600	0.48		(248	0.013	430	ιs	70.0	078		0.336		
17.41				+ +-	-								
27.41						1		_					

	CYRIL J. DEMEYERE LIN	AITED			STO	RM SE	WER I	DESIG	N SHE	ET - ME	TRIC		Dook flow							
	BOX 460 TH LSONBURG N	KS 4G 4H8				Canterbury	Place Sub	division					Manning Q	$= 1000 n^{-1} A R^{0.667}$	′s ^{0.5} l/s					
	PHONE: (519) 688-100	40 4/10 10		MUN	ICIPALITY	Central Flo	in (Belmon	t)		-			Intensity=at	^b mm/hr	5 1/5	2-	YR			
	FAX: (519)842-3235			Return	Period (Yr)	2		9		-			intonony-at			a= 22	36			
	e-mail: cidleng@cidleng	com	I	DF Curve	Based On	2010 MTO	IDF		-							b= -0	699			
	website: www.cjdleng.co	om							-							2 0				
		LOCATION Are					A	(C								SEWER DATA				
DWG #	STREET	FROM MH	ТО	∆ A (ba)	TOTAL (ba)	RUNOFF COEFF.	Δ Α*C	TOTAL A*C	TOTAL 2 778 A*C	TIME OI (M	F CONC. IIN)	RAINFALL INTENSITY (mm/hr)	PEAK FLOW (I/s)	PIPE SIZE	n	SLOPE (%)	CAPACITY	,		
				(nu)	(na)	'C'		XO	2	SECT.	ACCUM.	, , , , , , , , , , , , , , , , , , ,		()			(#0)			
																		Ļ		
	STREET A	MHST5	CBMHST4	0.18	0.18	0.42	0.076	0.076	0.210	USE	5.00	134.0	28.2	250	0.013	1.50	72.8	┝		
	SOUTHERN REAR LOTS	CB3	CBMH4-CBMH3	0.20	0.20	0.42	0.084	0.084	0.233	USE	5.00	134.0	31.3	; 300	0.013	3 0.50	68.4			
	STREET A	CBMH4	СВМНЗ	0.31	0.69	0.42	0.130	0.290	0.805	0.75	5.75	121.6	97.9	1500	0.013	3 0.50	4998.4	╞		
	NORTHERN REAR LOTS	CB5	CB4	0.14	0.14	0.42	0.059	0.059	0.163	USE	5.00	134.0	21.9	250	0.013	3 1.00	59.5	t		
		CB4	CBMH3-MHST2	0.13	0.27	0.42	0.055	0.113	0.315	0.65	5.65	123.1	38.8	250	0.013	3 4.00	118.9			
												(4)	(4)	Ļ	<u> </u>	<u> </u>		Ļ		
	STORM OUTLET	CBMHST3	MHST2	0.11	1.07	0.42	0.046	0.449	1.248	USE	22.70	(4) 101.6	⁽¹⁾ 57.5	300	0.013	3 1.00	96.7	┢		
-	NEIGHBORING EASTERN LANDS	EXT	MHST2	1.40	1.40	0.30	0.525	0.525	1.458	USE	30.90	⁽⁴⁾ 81.9	⁽²⁾ 119.4	375	0.013	3 0.50	124.0			
		MHST2	MHST1	0.00	2 47	0.42	0.000	0 974	2 707	1 45	30.90	⁽⁴⁾ 81.9	⁽³⁾ 176 9	375	0.013	3 2 90	298.6	+		
		MHST1	OUTLET	0.00	2.47	0.42	0.000	0.974	2.707	0.07	30.97	⁽⁴⁾ 81.8	⁽³⁾ 187.5	375	0.013	3 12.60	622.4			
																<u> </u>	_	L		
														┣────		+	+	┢		
														 			<u> </u>	╞		
																<u> </u>	+	┢		
																		L		
					NOTES:															
NO	REVISION	DATE	BY		(1) Maximu	m Pre-Develo	pment Outflo	ow Rate from	Site is 57.5	I/s During 10	0-Year Desi	gn Storm. Usir	ng 95m Flow	Length with 1.4°	% Slope a	and C = 0.30. C	alculated Tc =	22		

(1) Maximum Pre-Development Outflow Rate from Site is 57.5 l/s During 100-Year Design Storm. Using 95m Flow Length with 1.4% Slope and C = 0.30. Calculated Tc = 22.7 min. (2) Maximum Pre-Development Outflow Rate from Easterly Lands is 113.6 l/s During 100-Year Design Storm. Using 140m Flow Length with 1.0% Slope and C = 0.30. Calculated Tc = 30.9 min. (3) Maximum Pre-Development Outflow from Site (57.5 l/s) + Maximum Pre-Development Outflow from Easterly Lands (119.4 l/s) = 176.9 l/s (4) Intensity Based on 100-Year Design Storm.

100- a= b=	YR 51.5 -0.699	DE Cł	SIGNED BY: HECKED BY: JOB No.: SHEET:		DJL 20048 1 of 1				
VELOCITY (m/s)	LENGTH (m)	TIME OF FLOW (min.)	UPSTREA M INVERT (m)	DOWN STREAM INVERT (m)	FALL (m)	DROP ACROSS LOWER MANHOLE (m)			
1.48	30.0	0.34	259.10	258.65	0.45	0.50			
0.07	40.5	0.75	250.00	250.00	0.00	0.70			
0.97	43.5	0.75	258.90	208.08	0.22	0.70			
2 83	80.0	0 47	258 15	257 75	0.40	0.10			
2.00	00.0	0.11	200.10	201.10	0.10	0.10			
1.21	47.0	0.65	259.20	258.73	0.47	0.10			
2.42	28.5	0.20	258.63	257.45	1.14	0.20			
1.37	119.0	1.45	257.65	256.46	1.19	0.10			
1.12		0.00		256.45	0.00	0.10			
2.70	12.0	0.07	256.36	256.01	0.35	0.60			
5.63	39.0	0.12	255.41	250.50	4.91				

DATE:

11-Feb-22

PRE-DEVELOPMENT FLOW CALCULATIONS

TRIBUTARY AREA =	2.64 [Acres]		1.07	На
AVERAGE OUTFLOW =	1.47 [cfs]			
	0.0415 [m^3/s]			
PREDEVELOPMENT RUNOFF COEF. = $Q = 2.78^{A}I^{R}$		0.30		
$TC = (3.26 * (1.1-f*C)*(L)^{1/2})/Sw^{1/3}$				
WATERSHED LENGTH	95			
WATERSHED SLOPE (%)	1.4			

Predevelopment Flows - 1 in 2 Year Storm Event

Rainfall Intensity	2010 MTO IDF						
Intensity=at ^b mm/hr	Intensity Factors	2 year	5 year	10 year	25 year	50 year	100 year
a= 23.6	a:	23.6	31.1	36	42.3	46.9	51.5
b= -0.699	b:	-0.699	-0.699	-0.699	-0.699	-0.699	-0.699
Intensity = 46.524							
Time of Concentration TC = (3.26 $*$ (1.1-1.0	*C)*(140)^1/2)/0.4^1/3 =	22.723					
Predevelopment Flow Qpre = 2.78* A * I * F	R =	41.517 l/	s				

Predevelopment Flows - 1 in 5 Year Storm Event Rainfall Intensity 2010 MTO IDF

Intensity=at ^b mm/hr	Intensity Factors	2 year	5 year	10 year	25 year	50 year	100 year
a= 31.1	a:	23.6	31.1	36	42.3	46.9	51.5
b= -0.699	b:	-0.699	-0.699	-0.699	-0.699	-0.699	-0.699
Intensity = 61.309							
Time of Concentration TC = (3.26 * (1.1-1.0*C)	*(L)^1/2)/S^1/3 =	22.723					
Predevelopment Flow Qpre = 2.78* A * I * R =	:	54.711	l/s				

Predevelopment Flows - 1 in 25 Year Storm Event

Rainfall Intensity	<u>2010 MTO IDF</u>						
Intensity=at ^b mm/hr	Intensity Factors	2 year	5 year	10 year	25 year	50 year	100 year
a= 42.3	a:	23.6	31.1	36	42.3	46.9	51.5
b= -0.699	b:	-0.699	-0.699	-0.699	-0.699	-0.699	-0.699
Intensity = 83.388							
Time of Concentration TC = (3.26 * (1.1-1.0*C)*(L)^1/2)/S^1/3 =	22.723					
Predevelopment Flow Qpre = 2.78* A * I * R =	=	74.414 l/	's				

Predevelopment Flows - 1 in 100 Year Storm Event

Rainfall Intensity	2010 MTO IDF						
Intensity=at ^b mm/hr	Intensity Factors	2 year	5 year	10 year	25 year	50 year	100 year
a= 51.5	a:	23.6	31.1	36	42.3	46.9	51.5
b= -0.699	b:	-0.699	-0.699	-0.699	-0.699	-0.699	-0.699
	-						

Intensity = 101.524

Time of Concentration TC = (3.26 * (1.1-1.0*C)*(L)^1/2)/S^1/3 =	22.723
Predevelopment Flow Qpre = 2.78* A * I * R =	113.248 l/s

Post Development 'C'

20048 11-Feb-22

RAINFALL STORAGE CALCULATIONS - 2 YEAR

			Item	Area (Ha)	C Value
TRIBUTARY AREA =	2.64 [Acres]	1.07 Ha	Gravel	0.00	0.70
RUNOFF COEF. =	0.42		Building	0.25	0.90
PREDEVELOPMENT OUTFLOW =	1.47 [cfs]		Sod	0.75	0.20
	0.0415 [m^3/s]		Asph/Conc	0.10	0.90
POSTDEVELOPMENT OUTFLOW =	0.0405 [m^3/s]		Total	1.10	0.4227

Rainfall Int	tensity mm/hr	2010 MTO IDF Intensity Factors	2 year	5 year	10 year	25 year	50 year	100 year
	a= 23.6	a:	23.6	31.1	36	42.3	46.9	51.5
	b= -0.699	b:	-0.699	-0.699	-0.699	-0.699	-0.699	-0.699

	RAINFALL	TOTAL		RATE OF	VOLUME	VOLUME	Manning
TIME	INTENSITY	VOLUME	INFLOW	RELEASE	RELEASED	STORED	
[hrs]	[mm/hr]	[m^3]	[m^3/s]	[m^3/s]	[m^3]	[m^3]	
0.083	134	50	0.169	0.0405	12	38	< MAX STORA
0.167	82	62	0.104	0.0405	24	38	
0.333	51	77	0.064	0.0405	49	28	
0.50	38	87	0.048	0.0405	73	14	
0.667	31	94	0.039	0.0405	94	0	
0.833	27	101	0.034	0.0405	101	0	
1	24	107	0.030	0.0405	107	0	
1.5	18	121	0.022	0.0405	121	0	
2	15	132	0.018	0.0405	132	0	
3	11	149	0.014	0.0405	149	0	
4	9	162	0.011	0.0405	162	0	
8	6	200	0.007	0.0405	200	0	
12	4	226	0.005	0.0405	226	0	
18	3	255	0.004	0.0405	255	0	
24	3	278	0.003	0.0405	278	0	

Q = 1000n⁻¹AR^{0.667}s^{0.5} l/s 7.9

GE

20048 11-Feb-22

RAINFALL STORAGE CALCULATIONS - 5 YEAR

2.64 [Acres]	1.07 Ha
2.64 [Acres]	1.10 Ha
0.42	
1.93 [cfs]	
0.0547 [m^3/s]	
0.0453 [m^3/s]	
	2.64 [Acres] 2.64 [Acres] 0.42 1.93 [cfs] 0.0547 [m^3/s] 0.0453 [m^3/s]

Post Development 'C'

Item	Area (Ha)	C Value
Gravel	0.00	0.70
Building	0.25	0.90
Sod	0.75	0.20
Asph/Conc	0.10	0.90
Total	1.10	0.42

Rainfall	Intensity	/
		-

2010 MTO IDF

Intensity=a(t+b) ~ mm/hr

a=	31.1
b=	-0.699

Intensity Factors	2 year	5 year	10 year	25 year	50 year	100 year
a:	23.6	31.1	36	42.3	46.9	51.5
b:	-0.699	-0.699	-0.699	-0.699	-0.699	-0.699

	RAINFALL	TOTAL		RATE OF	VOLUME	VOLUME	
TIME	INTENSITY	VOLUME	INFLOW	RELEASE	RELEASED	STORED	
[hrs]	[mm/hr]	[m^3]	[m^3/s]	[m^3/s]	[m^3]	[m^3]	
0.083	177	68	0.229	0.0453	14	55	
0.167	109	84	0.140	0.0453	27	57	< MAX STORAGE
0.333	67	104	0.087	0.0453	54	50	
0.50	50	117	0.065	0.0453	82	36	
0.667	41	128	0.053	0.0453	109	19	
0.833	35	137	0.046	0.0453	136	1	
1	31	145	0.040	0.0453	145	0	
1.5	23	163	0.030	0.0453	163	0	
2	19	178	0.025	0.0453	178	0	
3	14	201	0.019	0.0453	201	0	
4	12	219	0.015	0.0453	219	0	
8	7	270	0.009	0.0453	270	0	
12	5	306	0.007	0.0453	306	0	
18	4	345	0.005	0.0453	345	0	
24	3	376	0.004	0.0453	376	0	

20048 11-Feb-22

RAINFALL STORAGE CALCULATIONS - 25 YEAR

SITE AREA =	2.64 [Acres]	1.07	На
TRIBUTARY AREA =	2.64 [Acres]	1.10	На
RUNOFF COEF. =	0.42		
PREDEVELOPMENT OUTFLOW =	2.63 [cfs]		
	0.074 [m^3/s]		
POSTDEVELOPMENT OUTFLOW =	0.050 [m^3/s]		

Post Development 'C'

ltem	Area (Ha)	C Value
Gravel	0.00	0.70
Building	0.25	0.90
Sod	0.75	0.20
Asph/Conc	0.10	0.90
Total	1.10	0.42

Ra	ainfall	Intensity

2010 MTO IDF

Intensity=a(t+b) ~ mm/hr

a=	42.3
b=	-0.699

Intensity Factors	2 year	5 year	10 year	25 year	50 year	100 year
a:	23.6	31.1	36	42.3	46.9	51.5
b:	-0.699	-0.699	-0.699	-0.699	-0.699	-0.699

TIME	RAINFALL INTENSITY	TOTAL VOLUME	INFLOW	RATE OF RELEASE	VOLUME RELEASED	VOLUME STORED	
[hrs]	[mm/hr]	[m^3]	[m^3/s]	[m^3/s]	[m^3]	[m^3]	
0.083	241	93	0.311	0.050	15	78	
0.167	148	115	0.191	0.050	30	85	< MAX STORAGE
0.333	91	141	0.118	0.050	60	81	
0.50	69	160	0.089	0.050	90	70	
0.667	56	174	0.073	0.050	120	54	
0.833	48	186	0.062	0.050	150	36	
1	42	197	0.055	0.050	180	16	
1.5	32	222	0.041	0.050	222	0	
2	26	242	0.034	0.050	242	0	
3	20	274	0.025	0.050	274	0	
4	16	299	0.021	0.050	299	0	
8	10	368	0.013	0.050	368	0	
12	7	416	0.010	0.050	416	0	
18	6	469	0.007	0.050	469	0	
24	5	512	0.006	0.050	512	0	

Post Development 'C'

20048 11-Feb-22

RAINFALL STORAGE CALCULATIONS - 100 YEAR

			Item	Area (Ha)	C Value
TRIBUTARY AREA =	2.64 [Acres]	1.10 Ha	Gravel	0.00	0.70
RUNOFF COEF. =	0.47 C Value x 125%		Building	0.25	0.90
PREDEVELOPMENT OUTFLOW =	4.00 [cfs]		Sod	0.75	0.20
	0.1132 [m^3/s]		Asph/Conc	0.10	0.90
POSTDEVELOPMENT OUTFLOW =	0.0575 [m^3/s]		Total	1.10	0.4227

Rainfall Intens	sit <u>y</u>
Intensity=a(t+b) ~	mm/hr

|--|

b) ័ mm/hr	Intensity Factors	2 year	5 year	10 year	25 year	50 year	100 year
a= 51.5	a:	23.6	31.1	36	42.3	46.9	51.5
b= -0.699	b:	-0.699	-0.699	-0.699	-0.699	-0.699	-0.699

	RAINFALL	TOTAL		RATE OF	VOLUME	VOLUME	Manning Q = $1000n^{-1}AR^{0.067}s^{0.5}$ l/s
TIME	INTENSITY	VOLUME	INFLOW	RELEASE	RELEASED	STORED	7.9
[hrs]	[mm/hr]	[m^3]	[m^3/s]	[m^3/s]	[m^3]	[m^3]	
0.083	293	125	0.417	0.0575	17	107	
0.167	180	154	0.256	0.0575	35	119	
0.333	111	189	0.158	0.0575	69	120	< MAX STORAGE
0.50	84	214	0.119	0.0575	103	110	
0.667	68	233	0.097	0.0575	138	95	
0.833	59	249	0.083	0.0575	172	77	
1	52	263	0.073	0.0575	207	56	
1.5	39	298	0.055	0.0575	298	0	
2	32	325	0.045	0.0575	325	0	
3	24	367	0.034	0.0575	367	0	
4	20	400	0.028	0.0575	400	0	
8	12	493	0.017	0.0575	493	0	
12	9	557	0.013	0.0575	557	0	
18	7	629	0.010	0.0575	629	0	
24	6	686	0.008	0.0575	686	0	

SUMMARY

1-2 YEAR STORAGE REQUIRED:	38 m³
1-5 YEAR STORAGE REQUIRED:	57 m ³
1-25 YEAR STORAGE REQUIRED:	81 m ³
1-100 YEAR STORAGE REQUIRED:	120 m ³
OUTFLOW RESTRICTION - 2 YEAR	41.52 l/s
OUTFLOW RESTRICTION - 5 YEAR	54.71 l/s
OUTFLOW RESTRICTION - 25 YEAR	74.41 l/s
OUTFLOW RESTRICTION - 100 YEAR	113.25 l/s

Maximum Storage Provided in Superpipe = 137 m³

1-2 YEAR PRIMARY CIRCULAR ORIFICE REQUIREMENTS

OUTFLOW RESTRICTION 0.0415 [m³/s]

Q=CA $\sqrt{(2gh)}$ d = $\sqrt{(4Q/(3.14C(\sqrt{2gh})))}$

h = E1-E2	A= 0.017671 E1= 258.42 E2 = 257.70 h = 0.72	AREA OF ORIFICE OPENING = $(\pi d^2)/4$ PONDING ELEVATION IN SUPERPIPE CENTERLINE OF ORIFICE OUTLET HYDRAULIC HEAD (m)
	C = 0.61 g = 9.81	DISCHARGE COEFFICIENT GRAVITATIONAL CONSTANT (m/s²)
	d= 0.152 d= 0.150	MAX. DIAMETER OF ORIFICE REQUIRED (m) USE DIAMETER OF ORIFICE (m)
		2

Q = 0.0405 Flow for Orfice Used (m³/s)

1-5 YEAR PRIMARY CIRCULAR ORIFICE REQUIREMENTS

OUTFLOW RESTRICTION 0.0547 [m³/s]

Q=CA $\sqrt{(2gh)}$ d = $\sqrt{(4Q/(3.14C(v(2gh))))}$

h = E1-E2	A= 0.017671 E1= 258.60 E2 = 257.70 h = 0.9	AREA OF ORIFICE OPENING = $(\pi d^2)/4$ PONDING ELEVATION IN SUPERPIPE CENTERLINE OF ORIFICE OUTLET HYDRAULIC HEAD (m)
	C = 0.61 g = 9.81	DISCHARGE COEFFICIENT GRAVITATIONAL CONSTANT (m/s²)
	d= 0.165 d= 0.150	MAX. DIAMETER OF ORIFICE REQUIRED (m) USE DIAMETER OF ORIFICE (m)

Q= 0.0453 Flow for Orfice Used (m³/s)

1-25 YEAR PRIMARY CIRCULAR ORIFICE REQUIREMENTS

OUTFLOW RESTRICTION 0.0744 [m³/s]

Q=CA $\sqrt{(2gh)}$ d = $\sqrt{(4Q/(3.14C(\sqrt{2gh})))}$

h = E1-E2	A= 0.017671	AREA OF ORIFICE OPENING = $(\pi d^2)/4$
	E1= 258.800 E2 = 257.70 b = 1 1	PONDING ELEVATION IN SUPERPIPE CENTERLINE OF ORIFICE OUTLET HYDRAULIC HEAD (m)
	C = 0.61	DISCHARGE COEFFICIENT
	g = 9.81 d= 0.226	GRAVITATIONAL CONSTANT (m/s ²)
	d= 0.220 d= 0.150	USE DIAMETER OF ORIFICE (m)

Q= 0.0501 Flow for Orfice Used (m³/s)

1-100 YEAR PRIMARY CIRCULAR ORIFICE REQUIREMENTS

OUTFLOW RESTRICTION 0.113 [m³/s]

Q=CA $\sqrt{(2gh)}$ d = $\sqrt{(4Q/(3.14C(v(2gh))))}$

h = E1-E2	A= 0.017671 E1= 259.150 E2 = 257.70 h = 1.45	AREA OF ORIFICE OPENING = $(\pi d^2)/4$ PONDING ELEVATION IN SUPERPIPE CENTERLINE OF ORIFICE OUTLET HYDRAULIC HEAD (m)
	C = 0.61 g = 9.81	DISCHARGE COEFFICIENT GRAVITATIONAL CONSTANT (m/s²)
	d= 0.211 d= 0.150	MAX. DIAMETER OF ORIFICE REQUIRED (m) USE DIAMETER OF ORIFICE (m)
		2

Q = 0.0575 Flow for Orfice Used (m³/s)

20048 11-Feb-22

SUMMARY

1-2 YEAR STORAGE RE	EQUIRED:	38 m ³	3
1-5 YEAR STORAGE RE	EQUIRED:	50 m ³	3
1-25 YEAR STORAGE R	EQUIRED:	85 m ³	3
1-100 YEAR STORAGE	REQUIRED:	120 m ³	3
OUTFLOW RESTRICTIO	ON - 2 YEAR	41.52 l/s	
OUTFLOW RESTRICTIO	ON - 5 YEAR	54.71 l/s	
OUTFLOW RESTRICTIO	ON - 25 YEAR	74.41 l/s	
OUTFLOW RESTRICTIO	ON - 100 YEAF	113.25 l/s	
RELEASE RATE - 2 YEA	AR	40.52 l/s	
RELEASE RATE - 5 YEA	AR	45.30 l/s	
RELEASE RATE - 25 YE	AR	50.08 l/s	
RELEASE RATE - 100 Y	EAR	57.50 l/s	
$A = \Pi D^2 / 4$	$D = (4A/\Pi)^{0.5}$		
MANNING $Q = 1000n^{-1}A$	R ^{0.667} s ^{0.5} l/s		

CONVEYANCE PIPE SLOPE	0.005 m/m
CONVEYANCE PIPE ROUGHNESS COEFFICIENT	0.013
CONVEYANCE PIPE DIAMETER	300 mm
CONVEYANCE PIPE AREA	0.07 m ²
CONVEYANCE PIPE HYDRAULIC RADIUS	0.1 m
CONVEYANCE PIPE CAPACITY	68.38 l/s
100-YEAR FLOW RATE	57.50 l/s
100 YEAR CONVEYANCE PIPE % CAPACITY	84.09 %
SUPERPIPE DIAMETER	1500 mm
SUPERPIPE AREA	1.77 m ²
SUPERPIPE LENGTH	80 m
SUPERPIPE VOLUME	141.37 m ³
CONVEYANCE PIPE LENGTH	80 m
CONVEYANCE PIPE TOTAL VOLUME	5.65 m ³
CONVEYANCE PIPE UTILIZED VOLUME	4.75 m ³

Storage Volume = Superpipe Volume - Conveyance Pipe Utilized Volume

STORAGE VOLUME	137 m ³
	197 111

APPENDIX 'D'

SITE DRAWINGS

- CANTERBURY PLACE DRAFT PLAN
- CANTERBURY PLACE PRELIMINARY SERVICING PLAN

DRAFT PLAN OF SUBDIVISION PART OF LOT 32 REGISTERED PLAN 231 (FORMER VILLAGE OF BELMONT) MUNCIPALITY OF CENTRAL ELGIN COUNTY OF ELGIN

INFORMATION REQUIRED UNDER SECTION 51(17) OF THE PLANNING ACT RSO 1990 (A) ON PLAN

(B) ON PLAN

- (C) ON PLAN
 (C) ON PLAN
 (D) LOTS 1–18 SINGLE DETACHED RESIDENTIAL BLOCK 19 RESERVE
 (E) NORTH EXISTING RESIDENTIAL, WEST EXISTING RESIDENTIAL (CANTERBURY PLACE SUBDIVISION) EAST – AGRICULTURAL (POSSIBLE FUTURE RESIDENTIAL) SOUTH – OPEN SPACE
- (F) ON PLAN
- (G) ON PLAN
- (H) MUN WATER AVAILABLE
- (I) CLAYEY SILT AND GLACIAL TILL
- (J) ON PLAN
- (K) STORM SEWERS, SANITARY SEWERS, HYDRO, TELEPHONE, GAS, T.V. CABLE (L) MUNICIPALITY OF CENTRAL ELGIN OFFICIAL PLAN AND ZONING BY-LAWS

DISTANCES SHOWN ON THIS PLAN ARE IN METRES AND CAN BE CONVERTED TO FEET BY DIVIDING BY 0.3048.

OWNER'S CERTIFICATE

I HEREBY SUBMIT THIS DRAFT PLAN OF SUBDIVISION.

DATE

GREG HUSSEY KARWOOD ONTARIO LTD.

SURVEYOR'S CERTIFICATE

I HEREBY CERTIFY THAT THE BOUNDARIES OF THE LANDS TO BE SUBDIVIDED AND THEIR RELATIONSHIP TO TO THE ADJACENT LANDS ARE ACCURATELY AND CORRECTLY SHOWN ON THIS PLAN.

DATE

KIM HUSTED. ONTARIO LAND SURVEYOR

<u>AREA SUMMARY</u>

	DESCRIPTION	AREA (ha)
LOTS 1–18	SINGLE DETACHED RESIDENTIAL	0.75
DEDICATED STREETS	STREET 'A'	0.22
BLOCK 19	RESERVE	0.001
TOTAL		(0.97)

